Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 118092, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167698

RESUMO

The sustainability of Mediterranean croplands is threatened by climate warming and rainfall reduction. The use of biochar as an amendment represents a tool to store organic carbon (C) in soil. The vulnerability of soil organic C (SOC) to the joint effects of climate change and biochar application needs to be better understood by investigating its main pools. Here, we evaluated the effects of partial rain exclusion (∼30%) and temperature increase (∼2 °C), combined with biochar amendment, on the distribution of soil organic matter (SOM) into particulate organic matter (POM) and the mineral-associated organic matter (MAOM). A set of indices suggested an increase in thermal stability in response to biochar addition in both POM and MAOM fractions. The MAOM fraction, compared to the POM, was particularly enriched in labile substances. Data from micro-Raman spectroscopy suggested that the POM fraction contained biochar particles with a more ordered structure, whereas the structural order decreased in the MAOM fraction, especially after climate manipulation. Crystalline Fe oxides (hematite) and a mix of ferrihydrite and hematite were detected in the POM and in the MAOM fraction, respectively, of the unamended plots under climate manipulation, but not under ambient conditions. Conversely, in the amended soil, climate manipulation did not induce changes in Fe speciation. Our work underlines the importance of discretely taking into account responses of both MAOM and POM to better understand the mechanistic drivers of SOC storage and dynamics.


Assuntos
Mudança Climática , Solo , Solo/química , Carvão Vegetal , Carbono , Material Particulado
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122430, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780741

RESUMO

Volcanic eruptions generate huge amounts of material with a wide range of compositions and therefore different physicochemical properties. We present a combined Raman and calorimetric study carried out on four synthetic basaltic glasses with different alkali vs iron ratio which spans the typical compositions of basalts on Earth. Differential scanning calorimetry shows that changes of this ratio modify the glass transition interval whereas Raman spectra allow to gain insight about the structure of the glass in the microscopic and macroscopic range. Indeed, our Raman analysis is extended from the high frequency region, characterized by the molecular peaks, to the very low frequency region where glasses exhibit the boson peak. Spectra show a variation of the non-bridging oxygens number that affects the medium range order of the glass and the network interconnections. In the considered substitution interval, the boson peak shape is conserved while its position shift upwards. This means that increasing the alkali vs iron content, the elastic medium hardens but it does not change nature. This study emphasizes the importance of considering the full-range spectra when analysing multicomponent or natural systems with small chemical variations.

3.
Sci Rep ; 11(1): 13072, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158535

RESUMO

The numerical modelling of magma transport and volcanic eruptions requires accurate knowledge of the viscosity of magmatic liquids as a function of temperature and melt composition. However, there is growing evidence that volcanic melts can be prone to nanoscale modification and crystallization before and during viscosity measurements. This challenges the possibility of being able to quantify the crystal-free melt phase contribution to the measured viscosity. In an effort to establish an alternative route to derive the viscosity of volcanic melts based on the vibrational properties of their parental glasses, we have subjected volcanologically relevant anhydrous glasses to Brillouin and Raman spectroscopic analyses at ambient conditions. Here, we find that the ratio between bulk and shear moduli and the boson peak position embed the melt fragility. We show that these quantities allow an accurate estimation of volcanic melts at eruptive conditions, without the need for viscosity measurements. An extensive review of the literature data confirms that our result also holds for hydrous systems; this study thus provides fertile ground on which to develop new studies of the nanoscale dynamics of natural melts and its impact on the style of volcanic eruptions.

4.
Sci Rep ; 9(1): 11252, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375707

RESUMO

Nanomaterials are widely used in medical and pharmaceutical fields, but their application in plant nutrition is at its infancy. Phosphorous (P) and iron (Fe) are essential mineral nutrients limiting in a wide range of conditions the yield of crops. Phosphate and Fe fertilizers to-date on the market display low efficiency (P fertilizers) and low persistence in soil (Fe fertilizers) and negatively affect the environment. In the tentative to overcome these problems, we developed a continuous industrially scalable method to produce FePO4 NPs based on the rapid mixing of salt solutions in a mixing chamber. The process, that included the addition of citrate as capping agent allowed to obtain a stable suspension of NPs over the time. The NPs were tested for their effectiveness as P and Fe sources on two hydroponically grown crop species (cucumber and maize) comparing their effects to those exerted by non-nanometric FePO4 (bulk FePO4). The results showed that FePO4 NPs improved the availability of P and Fe, if compared to the non-nano counterpart, as demonstrated by leaf SPAD indexes, fresh biomasses and P and Fe contents in tissues. The results open a new avenue in the application of nanosized material in the field of plant nutrition and fertilization.


Assuntos
Cucumis sativus/metabolismo , Fertilizantes , Nanopartículas/metabolismo , Zea mays/metabolismo , Agricultura/métodos , Técnicas de Química Sintética/métodos , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/metabolismo , Nanopartículas/química , Nutrientes/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fósforo/metabolismo
5.
J Appl Crystallogr ; 52(Pt 3): 618-625, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31236093

RESUMO

Detailed crystallographic information provided by X-ray diffraction (XRD) is complementary to molecular information provided by Raman spectroscopy. Accordingly, the combined use of these techniques allows the identification of an unknown compound without ambiguity. However, a full combination of Raman and XRD results requires an appropriate and reliable reference database with complete information. This is already available for XRD. The main objective of this paper is to introduce and describe the recently developed Raman Open Database (ROD, http://solsa.crystallography.net/rod). It comprises a collection of high-quality uncorrected Raman spectra. The novelty of this database is its interconnectedness with other open databases like the Crystallography Open Database (http://www.crystallography.net/cod and Theoretical Crystallography Open Database (http://www.crystallography.net/tcod/). The syntax adopted to format entries in the ROD is based on the worldwide recognized and used CIF format, which offers a simple way for data exchange, writing and description. ROD also uses JCAMP-DX files as an alternative format for submitted spectra. JCAMP-DX files are compatible to varying degrees with most commercial Raman software and can be read and edited using standard text editors.

6.
Polymers (Basel) ; 8(3)2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30979163

RESUMO

A large number of nano-sized oxides have been studied in the literature as fillers for polymeric membranes, such as Nafion®. Superacidic sulfated oxides have been proposed and characterized. Once incorporated into polymer matrices, their beneficial effect on peculiar membrane properties has been demonstrated. The alteration of physical-chemical properties of composite membranes has roots in the intermolecular interaction between the inorganic filler surface groups and the polymer chains. In the attempt to tackle this fundamental issue, here we discuss, by a multi-technique approach, the properties of a nanosized sulfated titania material as a candidate filler for Nafion membranes. The results of a systematic study carried out by synchrotron X-ray diffraction, transmission electron microscopy, thermogravimetry, Raman and infrared spectroscopies are presented and discussed to get novel insights about the structural features, molecular properties, and morphological characteristics of sulphated TiO2 nanopowders and composite Nafion membranes containing different amount of sulfated TiO2 nanoparticles (2%, 5%, 7% w/w).

7.
J Phys Chem B ; 118(2): 624-33, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24377328

RESUMO

The vibrational dynamics of a new class of cross-linked polymers made up of cyclodextrins is here investigated in the microscopic range by the joint use of light and inelastic neutron scattering experiments. The effect of increasing the connectivity of the polymeric network on the vibrational dynamics of the system is studied by exploiting the complementarity of these two different probes. The derived densities of vibrational states of the polymers evidence the presence of the characteristic anomalous excess of vibrational modes with respect to the Debye level, already observed in the low-frequency Raman spectra and referred to as boson peak (BP). The overall analysis of the spectra suggests an emerging picture in which the motions of hydrogen atoms of the polymers are progressively hampered when the cross-linking degree of the covalent network increases. At the same time, the frequency and intensity of the BP are found to significantly change by increasing the cross-linking degree of the polymeric network, as clearly suggested by the existence of a scaling-law for the BP evolution. These findings support the conclusion that the growing of the covalent connectivity of the system induces a general modifications of the elastic properties of these cyclodextrin-based polymers, which are, once again, modulated by the cross-linking agent/cyclodextrin molar ratio.

8.
Chemphyschem ; 14(12): 2786-92, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23813880

RESUMO

Aqueous solutions of naked nanotubes with Ti concentration up to 10 mM are obtained by hydrothermal synthesis followed by extensive ultrasound treatment. The morphology, surface characteristics, and solution behavior of the solubilized nanotubes are investigated. The time course of the solubilization process driven by ultrasound follows a first-order kinetic law and is mediated by the competition between Na(+) and H(+) for surface sites. The dynamics of interaction with small cations (i.e. the sodium ion) is studied by nuclear magnetic resonance spectroscopy and is demonstrated to be a multifaced process, since Na(+) is in part free to exchange between the binding sites on nanotubes and the bulk and in part is confined to slowly exchanging nanotube sites. The aqueous titanate nanotube solutions are stable for months, thus opening new perspectives for the use of this material in drug delivery and in homogeneous photocatalysis.


Assuntos
Nanotubos/química , Titânio/química , Íons/química , Espectroscopia de Ressonância Magnética , Sódio/química
9.
J Phys Chem B ; 117(14): 3917-26, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23509855

RESUMO

The effect of the inclusion into cyclodextrins (CD) cavity on the low-frequency vibrational dynamics of the anti-inflammatory drug ibuprofen (IBP) is here investigated by using Raman and inelastic neutron scattering (INS) experiments. The differences observed in the frequency regime 0-100 cm(-1) between the vibrational modes of uncomplexed racemic and enantiomeric IBP are discussed on the basis of comparison with the quantum chemical computation results, taking into account the distinct symmetry properties of the molecules involved in the formation of the host-guest complex. Subsequently, the inspection of the same frequency range in the spectra of pure host methyl-ß-CD and its IBP-inclusion complexes allows one to identify significant modifications in the vibrational dynamics of the guest molecule after their confinement into CD cavity. The experimental Raman and neutron spectra and the derived Raman coupling function C(R)(ω) show that the complexation process gives rise to a complete amorphization of the drug, as well as to a partial hindering, in the vibrational dynamics of complexes, of the modes between 50 and 150 cm(-1) attributed to CD molecule. The comparison between the Raman and neutron spectra of free and complexed IBP in the energy range of the Boson peak (BP) gives evidence that the dynamics related to this specific vibrational feature is sensitive to complexation phenomena.


Assuntos
Ciclodextrinas/química , Ibuprofeno/química , Modelos Moleculares , Difração de Nêutrons , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Estereoisomerismo , Termodinâmica , Vibração
10.
J Phys Chem B ; 116(17): 5323-7, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22497332

RESUMO

An integrated experimental approach, based on inelastic light-scattering techniques, has been here employed for a multilength scale characterization of networking properties of cyclodextrin nanosponges, a new class of cross-linked polymeric materials built up from natural oligosaccharides cyclodextrins. By using Raman and Brillouin scattering experiments, we performed a detailed inspection of the vibrational dynamics of these polymers over a wide frequency window ranging from gigahertz to terahertz, with the aim of providing physical descriptors correlated to the cross-linking degree and elastic properties of the material. The results seem to suggest that the stiffness of cross-linked polymers can be successfully tuned by acting on the type and the relative amount of the cross-linker during the synthesis of a polymer matrix, predicting and controlling their swelling and entrapment properties. The proposed experimental approach is a useful tool for investigating the structural and physicochemical properties of polymeric network systems.


Assuntos
Ciclodextrinas/química , Luz , Polímeros/química , Nanoestruturas/química , Espalhamento de Radiação , Análise Espectral Raman
12.
Phys Chem Chem Phys ; 11(14): 2420-7, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19325974

RESUMO

A detailed experimental and theoretical vibrational analysis of arsenicin A, the first polyarsenical isolated from Nature, is reported. By exploiting the dissimilar and complementary selection rules of infrared (IR) absorption and Raman scattering transitions, and by carrying out density functional theory (DFT) calculations on several candidate structures, we are able to determine the structure of arsenicin A. We demonstrate that vibrational spectroscopy can be a very useful tool in structure elucidation in cases where mass spectrometry (MS) measurements lead to unreliable information, and nuclear magnetic resonance (NMR) investigations are hindered by the presence of silent nuclei, and/or elements of symmetry, in the molecule. Our approach allows to establish a reliable methodology, based on molecular vibrational parameters, for the structural elucidation of any unknown organic compounds of medium-small size on which, nowadays, accurate theoretical calculations can be carried out in reasonable times, without resorting to large-dimension computing resources.


Assuntos
Arsenicais/química , Polímeros/química , Teoria Quântica , Vibração , Adamantano/química , Isomerismo , Espectrofotometria Infravermelho , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...